Scaling up Quantum computers has become a race between the various players in the market and IBM has raised the stakes by unveiling a 433 qubits Quantum computer that is more than a 3x increase from their previous setup of 127 qubits. Even with this massive gain they are still ways off from a making a 4000 qubit computer by 2025 which is their goal.
In this new setup IBM replaced the “quantum chandelier” used in the previous processors with flexible ribbon cables that are designed for cryogenic environments. These new cables allow a more efficient flow of microwave signals which in turn decreased the interference caused by the cables. This gave them a 77% increase in the number of connections to the chip, which in turn enabled them to scale up more easily. They also separated the wires and components for control and readout into their own layers, which further reduced the interference with the qubits.
The new setup also includes a state of the art cryo-CMOS prototype controller chip implemented using 14-nanometer FinFET technology that reduces the power requirement for the setup from about 100 watts per qubit to about 10 milliwatts per qubit. The new beta update for Qiskit Runtime allows the user to trade speed for reduced error count and a new option called Qiskit primitives called a “resilience level” lets users dial in the cost/accuracy trade that is suitable to the task being worked on. Both functionality is expected to be ready for production release by 2025.
Quantum computing makes my head hurt but there is no doubt that it is changing the computing world in a massive way.
Source:
* IEEE Spectrum: IBM Unveils 433-Qubit Osprey Chip
* New Scientist: IBM unveils world’s largest quantum computer at 433 qubits
– Suramya